Kalman filtering is an algorithm that uses a series of measurements observed over time, containing statistical noise and other inaccuracies, and produces estimates of unknown variables that tend to be more accurate than those based on a single measurement alone. It is widely used in control systems, navigation, and signal processing to estimate the state of a dynamic system from a series of noisy measurements.
This tech insight summary was produced by Sumble. We provide rich account intelligence data.
On our web app, we make a lot of our data available for browsing at no cost.
We have two paid products, Sumble Signals and Sumble Enrich, that integrate with your internal sales systems.